-
1 изоляционная способность
Русско-английский словарь по строительству и новым строительным технологиям > изоляционная способность
-
2 изолирующая способность
1) Engineering: insulating capability, insulating power2) Construction: insulating property, insulating value, insulation property3) Railway term: insulating efficiencyУниверсальный русско-английский словарь > изолирующая способность
-
3 изоляционная способность
1) Military: insulating effectiveness, isolating power2) Engineering: insulating power, insulating property, insulating value, insulation propertyУниверсальный русско-английский словарь > изоляционная способность
-
4 изоляционные свойства
2) Astronautics: insulation characteristics3) Coolers: insulating value4) Cement: insulating qualitiesУниверсальный русско-английский словарь > изоляционные свойства
-
5 способность
ability, capability, capacity, power, property* * *спосо́бность ж.
ability, capability, capacity, powerспосо́бность восстана́вливаться — recoverabilityоблада́ть спосо́бностью, напр. поглоща́ть га́зы — have a capacity for, e. g., absorbing [taking up] gases, have the property of, e. g., absorbing [taking up] gasesспосо́бность преодолева́ть подъё́м авто — hill-climbing ability, hill-climbing capacity, hillclimbing performanceпроявля́ть спосо́бность к … — show the (cap)ability to do … [for doing …]спосо́бность рассла́иваться — segregabilityспосо́бность сме́шиваться — miscibilityвключа́ющая спосо́бность (контактов переключателей, реле и т. п.) — making capacityвя́жущая спосо́бность — cementing [binding] powerспосо́бность дви́гателя к холо́дному за́пуску — cold-starting ability, cold-starting performanceспосо́бность деформа́ции — deformabilityдисперги́рующая спосо́бность — dispersion capacity, ability, dispersive powerдубя́щая спосо́бность — tanning propertyзаде́рживающая спосо́бность — retentivityизбира́тельная спосо́бность — selectivityизлуча́тельная спосо́бность — emissive [radiating] powerизоляцио́нная спосо́бность — insulating valueионизи́рующая спосо́бность — ionizing power, ionizing capacityисправля́ющая спосо́бность телегр. — margin, (printing) rangeспосо́бность к волоче́нию — drawabilityспосо́бность к дли́тельным перегру́зкам — sustained overload capacityспосо́бность к зака́ливанию — hardenabilityкле́ящая спосо́бность — adhesive abilityспосо́бность к прилипа́нию — cohesivenessспосо́бность кра́ски, кро́ющая — riding [covering] power of paintпридава́ть кро́ющую спосо́бность кра́ске — give body to a paintспосо́бность к сжа́тию — compressibilityспосо́бность к уса́дке — shrinkabilityнагру́зочная спосо́бность — load-carrying capacityокисли́тельная спосо́бность — oxidation powerокисли́тельно-восстанови́тельная спосо́бность — redox powerострукту́ривающая спосо́бность ( почвы) — structure-forming capacityотключа́ющая спосо́бность (контактов переключателей, реле и т. п.) — breaking [interrupting] capacityперегру́зочная спосо́бность — overload capacityпроника́ющая спосо́бность — penetrability, penetrating powerпропускна́я спосо́бность — (carrying) capacityпропускна́я спосо́бность водосли́ва — spillway capacityпропускна́я спосо́бность водосли́ва для па́водковых вод — flood-carrying capacity of a spillwayпропускна́я спосо́бность доро́ги — road [traffic] capacityпропускна́я спосо́бность канала́ — canal capacityпропускна́я спосо́бность ста́нции1. ж.-д. terminal capacity2. тлф. traffic-carrying capacityпропускна́я спосо́бность ствола́ горн. — shaft capacityпропускна́я спосо́бность трубы́ — pipe capacityпропускна́я, эксплуатацио́нная спосо́бность ( слов в минуту) телегр. — traffic speed, wpm; traffic-carrying capacity, wpmразреша́ющая спосо́бность — resolving power, resolutionразреша́ющая спосо́бность по а́зимуту — azimuth resolutionразреша́ющая спосо́бность по вре́мени — time resolutionразреша́ющая спосо́бность по да́льности — range resolutionразреша́ющая спосо́бность по углу́ ме́ста — elevation resolutionразреша́ющая спосо́бность по эне́ргии — energy resolutionразреша́ющая спосо́бность счё́тчика и́мпульсов — resolving time of a pulse counterрастворя́ющая спосо́бность — dissolving powerреакцио́нная спосо́бность — reactivityре́жущая спосо́бность — cutabilityсвязу́ющая спосо́бность — binding [cementing] powerсма́зывающая спосо́бность — lubricating power, lubricityсма́чивающая спосо́бность — wetting powerтеплоаккумули́рующая спосо́бность — heat-storage capacityтеплотво́рная спосо́бность — calorific power, calorific valueтеплотво́рная, вы́сшая спосо́бность — high [gross] heat(ing) [calorific] valueтеплотво́рная, ни́зшая спосо́бность — low [net] heat(ing) [calorific] valueуде́рживающая спосо́бность — holding capacityуплотня́ющая спосо́бность — sealing capacityэгализи́рующая спосо́бность — levelling capacityэкстраги́рующая спосо́бность — extractive power, extractivityэмульги́рующая спосо́бность — emulsifying power -
6 коэффициент изоляции
Construction: insulating valueУниверсальный русско-английский словарь > коэффициент изоляции
-
7 пропускная способность
1. bandwidthпропускная способность средств ввода-вывода — I/O bandwidth
2. carrying capacityпропускная способность; грузоподъемность — carrying capacity
3. network capacity4. absorbing capacity5. handling capacityнесущая способность; подъемная мощность — lifting capacity
6. off-take capacity7. traffic capacity8. capacityпропускная способность; допустимый ток — current capacity
9. throughput10. delivery valueпоказатель впитывающей способности бумаги — K&N value
низкий; теплотворная способность — low calorific value
11. reception capacityРусско-английский большой базовый словарь > пропускная способность
-
8 длительный допустимый ток
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Русско-английский словарь нормативно-технической терминологии > длительный допустимый ток
-
9 "дуговая" неисправность
"дуговая" неисправность
Неисправность, приводящая к возникновению дуги.
[Интент]Параллельные тексты EN-RU
An arc fault occurs when there is a reduction in the dielectric strength of the insulating means (air, in LV switchboards) interposed between two or more conducting elements at different potential.
The arc is generated at the moment when, due to the high ionization of the air, there is a breakdown of the dielectric of the medium and the consequent flow of the current through it.
In an arc fault the highest stresses are of thermal type and proportional to RaI2 owing to the high value taken by the arc resistance Ra; this because the fault current flows in a medium which is always insulating, even if extremely ionized.
Such stresses manifest themselves essentially in the form of:
• high thermal gradients caused by the quick and intense rise in the air temperature;
• high pressure gradients in the form of pressure wave;
• high ionization of the air with consequent reduction of its insulating strength.
Generally speaking, in a LV assembly designed and tested according to the Standard IEC 60439-1 an arc fault is not very likely to occur; however, should it occur, the consequences would be extremely harmful to both the equipment as well as the personnel (see Chapters 2.2 and 2.3).
The causes of an arc fault can be both technical as well as non technical; among the latter the most frequent are the following:
• personnel errors, above all during maintenance operations;
• installation operations not sufficiently accurate;
• inadequate maintenance, above all in the case of severe environmental conditions.
Among the technical causes of an arc fault in a LV assembly the following ones are to be remembered:
• breakdown of the insulation essentially in the proximity of the supports of the busbars and of the plug-in contacts of the withdrawable units (75% of cases);
• overvoltages generating disruptive discharges between the points at minimum clearances (15% of cases);
• constructional defects of the apparatus (10% of cases).
[ABB]К «дуговой» неисправности, относится неисправность, обусловленная уменьшением электрической прочности изолирующей среды (воздуха в НКУ) между двумя или более токоведущими частями, находящимися под разными электрическими потенциалами.
Дуга образуется в тот момент, когда вследствие высокой ионизации воздуха происходит пробой изолирующей среды, вследствие чего через нее начинает протекать электрический ток.
Проявлением дуговой неисправности, является тепловое воздействие, пропорциональное RaI2 и достигающее большого значения вследствие большого сопротивления дуги Ra.
Дело в том, что ток дуги протекает через среду, которая всегда является изолирующей, пусть даже и чрезвычайно ионизированной.
Указанные воздействия очевидны сами по себе особенно в форме:
• теплового градиента температуры, вызванного быстрым и интенсивным подъемом температуры воздуха;
• высоким градиентом давления в форме волны давления;
• высокой ионизацией воздуха с последующим уменьшением электрической прочности.
Вообще говоря, в НКУ, разработанных и испытанных в соответствии с требованиями стандарта МЭК 60439-1 «дуговая» неисправность маловероятна. Однако, если дуга все таки возникнет, ее последствия буду чрезвычайно тяжелыми как для оборудования, так и для персонала (см. п. 2.2 и 2.3).
Причина дуговой неисправности может носить как технический, так и нетехнический характер. Среди последних наиболее часто возникают следующие:
• ошибки персонала, совершаемые главным образом во время технического обслуживания;
• недостаточно аккуратное выполнение монтажа;
• ненадлежащее техническое обслуживание, главным образом при эксплуатации НКУ в тяжелых условиях окружающей среды.
Среди технических причин дуговой неисправности в НКУ необходимо помнить о следующих:
• пробой изоляции, особенно вблизи опор шин и втычных контактов выдвижных частей НКУ (75 % случаев);
• перенапряжения, вызываемые разрушительными электрическими разрядами между точками с минимальными зазорами (15 % случаев);
• конструктивные дефекты аппаратуры (10 % случаев).
[Перевод Интент]Тематики
- НКУ (шкафы, пульты,...)
EN
Русско-английский словарь нормативно-технической терминологии > "дуговая" неисправность
-
10 явление электрической дуги
явление электрической дуги
-
[Интент]Параллельные тексты EN-RU
Electric arc phenomenon
The electric arc is a phenomenon which takes place as a consequence of a discharge which occurs when the voltage between two points exceeds the insulating strength limit of the interposed gas; then, in the presence of suitable conditions, a plasma is generated which carries the electric current till the opening of the protective device on the supply side.
Gases, which are good insulating means under normal conditions, may become current conductors in consequence of a change in their chemical-physical properties due to a temperature rise or to other external factors.
To understand how an electrical arc originates, reference can be made to what happens when a circuit opens or closes.
During the opening phase of an electric circuit the contacts of the protective device start to separate thus offering to the current a gradually decreasing section; therefore the current meets growing resistance with a consequent rise in the temperature.
As soon as the contacts start to separate, the voltage applied to the circuit exceeds the dielectric strength of the air, causing its perforation through a discharge.
The high temperature causes the ionization of the surrounding air which keeps the current circulating in the form of electrical arc. Besides thermal ionization, there is also an electron emission from the cathode due to the thermionic effect; the ions formed in the gas due to the very high temperature are accelerated by the electric field, strike the cathode, release energy in the collision thus causing a localized heating which generates electron emission.
The electrical arc lasts till the voltage at its ends supplies the energy sufficient to compensate for the quantity of heat dissipated and to maintain the suitable conditions of temperature. If the arc is elongated and cooled, the conditions necessary for its maintenance lack and it extinguishes.
Analogously, an arc can originate also as a consequence of a short-circuit between phases. A short-circuit is a low impedance connection between two conductors at different voltages.
The conducting element which constitutes the low impedance connection (e.g. a metallic tool forgotten on the busbars inside the enclosure, a wrong wiring or a body of an animal entered inside the enclosure), subject to the difference of potential is passed through by a current of generally high value, depending on the characteristics of the circuit.
The flow of the high fault current causes the overheating of the cables or of the circuit busbars, up to the melting of the conductors of lower section; as soon as the conductor melts, analogous conditions to those present during the circuit opening arise. At that point an arc starts which lasts either till the protective devices intervene or till the conditions necessary for its stability subsist.
The electric arc is characterized by an intense ionization of the gaseous means, by reduced drops of the anodic and cathodic voltage (10 V and 40 V respectively), by high or very high current density in the middle of the column (of the order of 102-103 up to 107 A/cm2), by very high temperatures (thousands of °C) always in the middle of the current column and – in low voltage - by a distance between the ends variable from some microns to some centimeters.
[ABB]Явление электрической дуги
Электрическая дуга между двумя электродами в газе представляет собой физическое явление, возникающее в тот момент, когда напряжения между двумя электродами превышает значение электрической прочности изоляции данного газа.
При наличии подходящих условий образуется плазма, по которой протекает электрический ток. Ток будет протекать до тех пор, пока на стороне электропитания не сработает защитное устройство.
Газы, являющиеся хорошим изолятором, при нормальных условиях, могут стать проводником в результате изменения их физико-химических свойств, которые могут произойти вследствие увеличения температуры или в результате воздействия каких-либо иных внешних факторов.
Для того чтобы понять механизм возникновения электрической дуги, следует рассмотреть, что происходит при размыкании или замыкании электрической цепи.
При размыкании электрической цепи контакты защитного устройства начинают расходиться, в результате чего постепенно уменьшается сечение контактной поверхности, через которую протекает ток.
Сопротивление электрической цепи возрастает, что приводит к увеличению температуры.
Как только контакты начнут отходить один от другого, приложенное напряжение превысит электрическую прочность воздуха, что вызовет электрический пробой.
Высокая температура приведет к ионизации воздуха, которая обеспечит протекание электрического тока по проводнику, представляющему собой электрическую дугу. Кроме термической ионизации молекул воздуха происходит также эмиссия электронов с катода, вызванная термоэлектронным эффектом. Образующиеся под воздействием очень высокой температуры ионы ускоряются в электрическом поле и бомбардируют катод. Высвобождающаяся, в результате столкновения энергия, вызывает локальный нагрев, который, в свою очередь, приводит к эмиссии электронов.
Электрическая дуга длится до тех пор, пока напряжение на ее концах обеспечивает поступление энергии, достаточной для компенсации выделяющегося тепла и для сохранения условий поддержания высокой температуры. Если дуга вытягивается и охлаждается, то условия, необходимые для ее поддержания, исчезают и дуга гаснет.
Аналогичным образом возникает дуга в результате короткого замыкания электрической цепи. Короткое замыкание представляет собой низкоомное соединение двух проводников, находящихся под разными потенциалами.
Проводящий элемент с малым сопротивлением, например, металлический инструмент, забытый на шинах внутри комплектного устройства, ошибка в электромонтаже или тело животного, случайно попавшего в комплектное устройство, может соединить элементы, находящиеся под разными потенциалами, в результате чего через низкоомное соединение потечет электрический ток, значение которого определяется параметрами образовавшейся короткозамкнутой цепи.
Протекание большого тока короткого замыкания вызывает перегрев кабелей или шин, который может привести к расплавлению проводников с меньшим сечением. Как только проводник расплавится, возникает ситуация, аналогичная размыканию электрической цепи. Т. е. в момент размыкания возникает дуга, которая длится либо до срабатывания защитного устройства, либо до тех пор, пока существуют условия, обеспечивающие её стабильность.
Электрическая дуга характеризуется интенсивной ионизацией газов, что приводит к падению анодного и катодного напряжений (на 10 и 40 В соответственно), высокой или очень высокой плотностью тока в середине плазменного шнура (от 102-103 до 107 А/см2), очень высокой температурой (сотни градусов Цельсия) всегда в середине плазменного шнура и низкому падению напряжения при расстоянии между концами дуги от нескольких микрон до нескольких сантиметров.
[Перевод Интент]Тематики
- НКУ (шкафы, пульты,...)
EN
Русско-английский словарь нормативно-технической терминологии > явление электрической дуги
-
11 действие электрической дуги, возникающей внутри НКУ распределения и управления
действие электрической дуги, возникающей внутри НКУ распределения и управления
-
[Интент]Параллельные тексты EN-RU
Effects of the electric arc inside switchgear and controlgear assemblies
In the proximity of the main boards, i.e. in the proximity of big electrical machines, such as transformers or generators, the short-circuit power is high and consequently also the energy associated with the electrical arc due to a fault is high.
Without going into complex mathematical descriptions of this phenomenon, the first instants of arc formation inside a cubicle can be schematized in 4 phases:
1. compression phase: in this phase the volume of the air where the arc develops is overheated owing to the continuous release of energy; due to convection and radiation the remaining volume of air inside the cubicle warms up; initially there are temperature and pressure values different from one zone to another;
2. expansion phase: from the first instants of internal pressure increase a hole is formed through which the overheated air begins to go out. In this phase the pressure reaches its maximum value and starts to decrease owing to the release of hot air;
3. emission phase: in this phase, due to the continuous contribution of energy by the arc, nearly all the air is forced out under a soft and almost constant overpressure;
4. thermal phase: after the expulsion of the air, the temperature inside the switchgear reaches almost that of the electrical arc, thus beginning this final phase which lasts till the arc is quenched, when all the metals and the insulating materials coming into contact undergo erosion with production of gases, fumes and molten material particles.
Should the electrical arc occur in open configurations, some of the described phases could not be present or could have less effect; however, there shall be a pressure wave and a rise in the temperature of the zones surrounding the arc.
Being in the proximity of an electrical arc is quite dangerous; here are some data to understand how dangerous it is:
• pressure: at a distance of 60 cm from an electrical arc associated with a 20 kA arcing fault a person can be subject to a force of 225 kg; moreover, the sudden pressure wave may cause permanent injuries to the eardrum;
• arc temperatures: about 7000-8000 °C;
• sound: electrical arc sound levels can reach 160 db, a shotgun blast only 130 db.
[ABB]Действие электрической дуги, возникающей внутри НКУ распределения и управления
Короткое замыкание вблизи больших силовых устройств, таких как трансформаторы или генераторы имеет очень большую мощность. Поэтому энергия электрической дуги, возникшей в результате короткого замыкания, очень большая.
Не вдаваясь в сложное математическое описание данного явления, можно сказать, что первые мгновения формирования дуги внутри шкафа можно упрощенно разделить на четыре этапа:
1. Этап сжатия: на этом этапе объем воздуха, в котором происходит зарождение дуги перегревается вследствие непрерывного высвобождения энергии. За счет конвекции и излучения оставшийся объем воздуха внутри шкафа нагревается. На этом начальном этапе значения температуры и давления воздуха в разных зонах НКУ разные.
2. Этап расширения: с первых мгновений внутреннее давление создает канал, через который начинается движение перегретого воздуха. На этом этапе давление достигает своего максимального значения, после чего начинает уменьшаться вследствие выхода горячего воздуха.
3. Этап эмиссии: на этом этапе вследствие непрерывного пополнения энергией дуги почти весь воздух выталкивается под действием мягкого и почти постоянного избыточного давления.
4. Термический этап: после выхлопа воздуха температура внутри НКУ почти достигает температуры электрической дуги. Так начинается заключительный этап, который длится до тех пор, пока дуга не погаснет. При этом все металлические и изоляционные материалы, вступившие в контакт с дугой, оказываются подвергнутыми эрозии с выделением газов, дыма и частиц расплавленного материала.
Если электрическая дуга возникнет в открытом НКУ, то некоторые из описанных этапов могут не присутствовать или могут иметь меньшее воздействие. Тем не менее будет иметь место воздушная волна и подъем температуры вблизи дуги.
Находиться вблизи электрической дуги довольно опасно. Ниже приведены некоторые сведения, помогающие осознать эту опасность:
• давление: На расстоянии 60 см от электрической дуги, вызванной током короткого замыкания 20 кА, человек может подвергнуться воздействию силы 225 кг. Более того, резкая волна давления может нанести тяжелую травму барабанным перепонкам;
• температура дуги: около 7000-8000 °C;
• шумовое воздействие: Уровень шумового воздействия электрической дуги может достигнуть 160 дБ (выстрел из дробовика – 130 дБ).
[Перевод Интент]Тематики
- НКУ (шкафы, пульты,...)
EN
Русско-английский словарь нормативно-технической терминологии > действие электрической дуги, возникающей внутри НКУ распределения и управления
См. также в других словарях:
Insulating concrete forms — ( ICFs ) are stay in place formwork for energy efficient, cast in place reinforced concrete walls.The forms are interlocking modular units that are dry stacked (without mortar) and filled with concrete. The forms lock together somewhat like Lego… … Wikipedia
R-value (insulation) — The R value or R value is a measure of thermal resistance (K·m²/W) [Oak Ridge National Laboratory, [http://www.ornl.gov/sci/roofs+walls/insulation/ins 02.html Which Kind Of Insulation Is Best?] , retrieved 2008 07 13.] used in the building and… … Wikipedia
R-Value — A measure of the capacity of a material to resist heat transfer. The R Value is the reciprocal of the conductivity of a material (U Value). The larger the R Value of a material, the greater its insulating properties. *** A measure of a… … Energy terms
u-value — ˈ ̷ ̷ ¦ ̷ ̷ (ˌ) ̷ ̷ noun Usage: usually capitalized U Etymology: from unit : a measure of the heat transmission through a building part (as a wall or window) or a given thickness of a material (as insulation) with lower numbers indicating better… … Useful english dictionary
U-value — /yooh val yooh/, n. a measure of the flow of heat through an insulating or building material: the lower the U value, the better the insulating ability. Cf. R value. [1945 50; U, symbol for internal energy] * * * … Universalium
U-value — U val•ue [[t]ˈyuˌvæl yu[/t]] n. bui a measure of the flow of heat through an insulating or building material: the lower the U value, the better the insulating ability Compare R value • Etymology: 1945–50; U, symbol for internal energy … From formal English to slang
R-value — [är′val΄yo͞o] n. a measurement indicating the resistance of a given thickness of material, esp. insulating material, to the flow of heat: the higher the R value, the greater the insulation … English World dictionary
R-value — noun Etymology: probably from thermal resistance Date: 1948 a measure of resistance to the flow of heat through a given thickness of a material (as insulation) with higher numbers indicating better insulating properties compare U value … New Collegiate Dictionary
U-value — noun Etymology: unit Date: 1949 a measure of the heat transmission through a building part (as a wall or window) or a given thickness of a material (as insulation) with lower numbers indicating better insulating properties compare R value … New Collegiate Dictionary
R-value — /ahr val yooh/, n. a measure of the resistance of an insulating or building material to heat flow, expressed as R 11, R 20, and so on; the higher the number, the greater the resistance to heat flow. Cf. U value. [1945 50; R, symbol for… … Universalium
U-Value — (see Coefficient of Heat Transmission) The reciprocal of R Value. The lower the number, the greater the heat transfer resistance (insulating) characteristics of the material … Energy terms